

RMPP141 NATURAL

RMPP141 is a Polypropylene (PP) Compound specifically developed for rotational molding, available as ambient ground powder or pellets. Black is also available ex stock.

It has excellent moldability and its enhanced properties allow it to be used in demanding applications for which polyethylene is not the optimum polymer.

RMPP141 Natural complies with the following:

- ▶ U.S. 21 CFR F.D.A. regulation Part 177.1520 clause (c) (1.1) and (d).
- ▶ EU Directive 10/2011 & 1935/2004

FEATURES:

- An excellent balance of high stiffness & high impact
- Good Temperature Resistance (dry & wet)
- High FNCT / ESCR and good chemical resistance
- **Rated** > UV12
- Excellent long term creep performance
- Improved surface hardness and scratch resistance

PROCESSING GUIDELINES:

- Oven temperature ~ 570° F to achieve mold surface temperature > 475° F
- PIAT $435^{\circ}F 455^{\circ}F$
- Rotation similar to LMDPE
- Smartvents will increase pressure inside mold and assist with reducing warpage and minimising pinholes
- PP can stress whiten so minimise impact when demolding

OBSERVATIONS:

- Lubricity of PP means little or no mold release needed
- Lower shrinkage than PE
- Less warpage for large surfaces due to stiffness and crystallization
- Complete crystallization may take up to 72 hours to obtain optimal physical properties
- Heat is critical for sintering PP, so minimise heat sinks in mold

Properties	Conditions	Units	Nominal Values	Testing Methods
Physical				
Melt Flow Rate	445 [°] F/2.16kgs	g/10 min	13	ASTM D1238
Density ²		g/cm ³	0.900	ASTM D1505
Mechanical & Thermal				
Tensile stress ¹	At yield	PSI	3500	ASTM D638
Tensile strain ¹	% At yield	%	5	ASTM D638
Tensile Modulus ¹		PSI	181,000	ASTM D638
Flexural Modulus ¹		PSI	174,000	ASTM D790
FNCT ² 2% Ige *	5MPa @ 122 ⁰ F 6MPa @ 122 ⁰ F	Hours	>300 170	ISO16770 10x10mm x 1.6mm notch
ESCR ¹	2% Igepal *	Hours	> 1000	ASTM D1693
Shore D Hardness ¹			62	ASTM D2240
HDT ¹ HDT ¹	66 PSI 264 PSI	Deg F Deg F	240 144	ISO 75-2 4mm Edgewise
ARM Impact ¹	73 ⁰ F ¹ / ₄ " thick	Ftlb	105	ARM Method
ARM Impact ¹	32 ⁰ F ¹ / ₄ " thick	Ftlb	55	ARM Method
ARM Impact ¹	-4 ⁰ F ¹ / ₄ " thick	Ftlb	27	ARM Method
Poisson Ratio			0.44	ASTM D638

Notes: ¹ Roto molded

lded

² Compression molded

* Or equivalent

Important: The information contained in this document is of a general nature only and is intended to provide an indication of the potential properties and benefits of a particular polypropylene compound. The statistical and other information provided in this document has been determined in laboratory test conditions. Accordingly, there may be differences in performance in a production environment including having regard to the materials used. The information contained in this document should not be used as a sole basis for production or manufacturing purposes. Independent testing verification and independent professional advice should be obtained before making a decision to use any product or to apply any method or process. To the full extent permitted by law, PSD Rotoworx Pty Limited (ACN 166 016 244) ("PSD Rotoworx"), its related entities, their directors and employees: (i) give no warranty or representation that the information contained in this document is accurate and complete in every particular, and (ii) disclaim all liability for reliance on the information contained in this document.

PSD Rotoworx Pty Ltd PO Box 838, Wahroonga, NSW 2076 Australia sales@psdrotoworx.com